This post continues the tear down and reverse engineering of the Acurite 0077XW / 00592TX Wireless Remote Temperature Probe Part 1 & Part 2.
After tearing apart the wireless temperature base station and seeing the straightforward electrical connection between the radio module and the base station logic board, Part 1, and then picking apart the remote probe temperature data protocol, Part 2, I was ready to read the wireless data into a microcontroller.
Given that I want to receive the data from the probes wirelessly then I am going to need a wireless receiver. Also given that I purchased 3 probe plus base station combos just to get the 3 probes I have extra base stations I wont be using. The obvious answer is to pull the wireless module from one of the base stations.
The surgery was pretty straightforward. I desoldered a wireless module from the ribbon cable in the base station, cleaned the solder out of the holes, and soldered in a 4 pin header so I could plug the module into a breadboard.
I plugged the wireless module into a breadboard with an Arduino Pro Mini 3.3V and an oled display.
For this exercise ignore the oled display and the wiring on the backside of the breadboard. We are only interested in the four wires going from the Arduino to the wireless module. The red wire is 3.3 volts, the black wire is ground, the yellow wire goes from D on the wireless module to digital pin D3 on the Pro Mini, and the green wire goes from SH on the wireless module to digital pin D4 on the Pro Mini.
The squelch pin (SH) is an input to the wireless module and so is configured as an output on the Arduino.
The data pin (D) is an output from the wireless module and so is configured as an input on the Arduino.
Arduino pin D3 was specifically chosen as the data input as it is a change triggerable interrupt pin. The bit stream from the probe is captured by the Arduino by taking an interrupt on every level change of the data line from the wireless module and measuring the time from the last change in the data stream to this change. This allows the Pro Mini to measure the width of the high and low parts of each pulse and determine if the pulse is a data sync or data bit.
It is known that interesting pulses are close to 0.2 msec, 0.4 msec, and 0.61 msec long. Pulses that are significantly shorter than 0.2 msec or significantly longer than 0.61 msec are not interesting, are not part of the data stream, and signify the data stream is not yet in sync and Pro Mini should be looking for the data sync pulses.
It is known that the start of the interesting data, the data sync, is eight 0.61 msec pulses in a row. The data sync consists of a 0.61 msec high pulse followed by a 0.61 msec low pulse, with this combination repeated four times.
Since the Pro Mini interrupt pin is configured for change, every time the interrupt is called you can assume there is a change from high to low or low to high on the data line. If the Pro Mini measures the time between every interrupt and every sees eight 0.61 msec times in a row that indicates a data sync has been seen. If a data sync is seen the Pro Mini should immediately start measuring pulse times until 56 data bits, or 112 edges (interrupts) are counted.
Once the 112 high or low pulses are counted the data is filtered two pulses at a time to determine if a 0 or a 1 bit was detected. If the captured pulse stream is a 0.4 msec pulse followed by a 0.2 msec pulse a logic high (1) is recorded. If a 0.2 msec pulse followed by a 0.4 msec pulse is detected then a logic low (0) is recorded. All 112 pulses give the 56 bits or 7 data bytes of the data stream.
Once the data stream is recorded the bytes can be decoded as follows:
The first and second bytes of the data are the unique probe address. The upper two bits of the first byte are the probe channel indicator:
11 = channel A 10 = channel B 00 = channel C
The remaining 6 bits of the first byte and the 8 bits of the second byte are a unique identifier per probe.
[strike]The next two bytes are always 0x44 followed by 0x90, for all of the probes I tested (a sample of 6 probes).[/strike]
[update – see Part 4]
The upper nybble of the third byte carries the remote probe low battery indication.
When the remote probe batteries are fresh, voltage above 2.5V, the third byte is 0x44.
When the remote probe batteries get low, below 2.4V, the third byte changes to 0x84.
The fourth byte continues to stay at 0x90 for all conditions.
[/update]
The next two bytes are the temperature value. The temperature is encoded as the lower 7 bits of both bytes with the most significant bit being an even parity bit. The MSB will be set if required to insure an even number of bits are set to 1 in the byte. If the least significant seven bits have an even number of 1 bits set the MSB will be 0, otherwise the MSB will be set to 1 to insure an even number of bits.
The last byte is a simple running sum, modulo 256, of the previous 6 data bytes.
Code to capture and decode the bit stream can be found at my github repo.
I’ve created a spreadsheet ProbeX6.xls to paste the decoded data into to check the checksum of each transmission and decode the temperature data.
Decoded data from four different probes is shown here. The data is formatted as hex codes decoded and emitted by the Pro Mini followed by the same data in binary format, and then the calculated temperature.
One thing to keep in mind is that each probe requires a “correction factor” to convert from the probe reading to the correct temperature. After having such success with this portion of the project I went out and purchased three more probe / base station modules. I checked all six probes and each had a different offset to convert from sensor reading to actual temperature.
The next step is to pull the data into a RasPi and create a presentation layer to map temperatures around my house. The first part of this project, the reverse engineering and decoding of the 00592TX protocol was a blast. I expect the next phase of the project, the RasPi and data warehousing to be just as much fun.
I hope this series was helpful and if you have any comments, questions, or suggestions please leave a comment below.